Format

Send to

Choose Destination
See comment in PubMed Commons below
J Theor Biol. 2012 Jun 21;303:141-51. doi: 10.1016/j.jtbi.2012.03.024. Epub 2012 Mar 28.

Modeling the inhibition of breast cancer growth by GM-CSF.

Author information

1
Mathematical Biosciences Institute, The Ohio State University, USA. b.szomolay@warwick.ac.uk

Abstract

M-CSF is overexpressed in breast cancer and is known to stimulate macrophages to produce VEGF resulting in angiogenesis. It has recently been shown that the growth factor GM-CSF injected into murine breast tumors slowed tumor growth by secreting soluble VEGF receptor-1 (sVEGFR-1) that binds and inactivates VEGF. This study presents a mathematical model that includes all the components above, as well as MCP-1, tumor cells, and oxygen. The model simulations are representative of the in vivo data through predictions of tumor growth using different protocol strategies for GM-CSF for the purpose of predicting higher degrees of treatment success. For example, our model predicts that once a week dosing of GM-CSF would be less effective than daily, twice a week, or three times a week treatment because of the presence of essential factors required for the anti-tumor effect of GM-CSF.

PMID:
22763136
DOI:
10.1016/j.jtbi.2012.03.024
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center