Send to

Choose Destination
See comment in PubMed Commons below
Int J Cancer. 2013 Feb 1;132(3):732-7. doi: 10.1002/ijc.27705. Epub 2012 Jul 21.

Identification of novel driver tumor suppressors through functional interrogation of putative passenger mutations in colorectal cancer.

Author information

  • 1Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA.


Cancer genome sequencing efforts are leading to the identification of genetic mutations in many types of malignancy. However, the majority of these genetic alterations have been considered random passengers that do not directly contribute to tumorigenesis. We have previously conducted a soft agar-based short hairpin RNA (shRNA) screen within colorectal cancer (CRC) candidate driver genes (CAN-genes) using a karyotypically diploid hTERT- and CDK4-immortalized human colonic epithelial cell (HCEC) model and discovered that depletion of 65 of the 151 CAN-genes enhanced anchorage-independent growth in HCECs with ectopic expression of K-Ras(V12) and/or TP53 knockdown. We now constructed an interaction map of the confirmed CAN-genes with CRC non-CAN-genes and screened for functional tumor suppressors. Remarkably, depletion of 15 out of 25 presumed passenger genes that interact with confirmed CAN-genes (60%) promoted soft agar growth in HCECs with TP53 knockdown compared to only 7 out of 55 (12.5%) of presumed passenger genes that do not interact. We have thus demonstrated a pool of driver mutations among the putative CRC passenger/incidental mutations, establishing the importance of employing biological filters, in addition to bioinformatics, to identify driver mutations.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center