Send to

Choose Destination
J Membr Biol. 2012 Jun;245(5-6):243-53. doi: 10.1007/s00232-012-9445-3. Epub 2012 Jun 30.

Neurons and β-cells of the pancreas express connexin36, forming gap junction channels that exhibit strong cationic selectivity.

Author information

Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.


We examined the permeability of connexin36 (Cx36) homotypic gap junction (GJ) channels, expressed in neurons and β-cells of the pancreas, to dyes differing in molecular mass and net charge. Experiments were performed in HeLa cells stably expressing Cx36 tagged with EGFP by combining a dual whole-cell voltage clamp and fluorescence imaging. To assess the permeability of the single GJ channel (P(γ)), we used a dual-mode excitation of fluorescent dyes that allowed us to measure cell-to-cell dye transfer at levels not resolvable using whole-field excitation solely. We demonstrate that P(γ) of Cx36 for cationic dyes (EAM-1⁺ and EAM-2⁺) is ~10-fold higher than that for an anionic dye of the same net charge and similar molecular mass, Alexa fluor-350 (AFl-350⁻). In addition, P(γ) for Lucifer yellow (LY²⁻) is approximately fourfold smaller than that for AFl-350⁻, which suggests that the higher negativity of LY²⁻ significantly reduces permeability. The P(γ) of Cx36 for AFl-350 is approximately 358, 138, 23 and four times smaller than the P(γ)s of Cx43, Cx40, Cx45, and Cx57, respectively. In contrast, it is 6.5-fold higher than the P(γ) of mCx30.2, which exhibits a smaller single-channel conductance. Thus, Cx36 GJs are highly cation-selective and should exhibit relatively low permeability to numerous vital negatively charged metabolites and high permeability to K⁺, a major charge carrier in cell-cell communication.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center