Send to

Choose Destination
Acta Crystallogr D Biol Crystallogr. 2012 Jul;68(Pt 7):846-53. doi: 10.1107/S0907444912014126. Epub 2012 Jun 19.

The structure of a Xanthomonas general stress protein involved in citrus canker reveals its flavin-binding property.

Author information

Department of Biochemistry, University of California-Riverside, Riverside, California, USA.


Xanthomonas citri pv. citri (Xac) causes citrus canker and affects citrus agriculture worldwide. Functional genetic analysis has indicated that a putative general stress protein (XacGSP) encoded by the Xac2369 gene is involved in the bacterial infection. In this report, the crystal structure of XacGSP was determined to 2.5 Å resolution. There are four XacGSP molecules in the crystal asymmetric unit. Each XacGSP monomer folds into a six-stranded antiparallel β-barrel flanked by five α-helices. A C-terminal extension protrudes from the sixth β-strand of the β-barrel and pairs with its counterpart from another monomer to form a bridge between the two subunits of an XacGSP dimer. Two XacGSP dimers cross over each other to form a tetramer; the β-barrels from one dimer contact the β-barrels of the other, while the two bridges are distant from each other and do not make contacts. The three-dimensional structure of the XacGSP monomer is very similar to those of pyridoxine 5-phosphate oxidases, a group of enzymes that use flavin mononucleotide (FMN) as a cofactor. Consistent with this, purified XacGSP protein binds to both FMN and flavin adenine dinucleotide (FAD), suggesting that XacGSP may help the bacteria to react against the oxidative stress induced by the defense mechanisms of the plant.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for International Union of Crystallography
Loading ...
Support Center