Send to

Choose Destination
Chromosome Res. 2012 May;20(4):447-60. doi: 10.1007/s10577-012-9294-z. Epub 2012 Jun 29.

Twenty-four chromosome FISH in human IVF embryos reveals patterns of post-zygotic chromosome segregation and nuclear organisation.

Author information

School of Biosciences, University of Kent, Canterbury, UK.


Fluorescence in situ hybridisation (FISH) was first applied on in vitro fertilisation (IVF) embryos for the preimplantation genetic diagnosis of sex, then chromosome translocations and later for chromosome copy number (PGS). Because of the controversy surrounding PGS diagnostically, it has been replaced by array-based approaches; however, FISH remains a powerful tool for investigating mechanisms of both post-zygotic segregation error and nuclear organisation, especially if most or all of the chromosomes in the karyotype can be analysed. The purpose of this study was to develop and apply a 24 chromosome FISH assay to investigate chromosome-specific rates of gain and loss, nuclear organisation patterns and the veracity of the original PGS result in days 5-6 human embryos. Analysis of 17 embryos by this newly developed approach gave strong signals for all chromosomes; it revealed chromosome copy number for each human chromosome per cell for each embryo and the nuclear address of the (mostly centromeric) loci probed. As all embryos were surplus to IVF requirements for both transfer and freezing (and many had an abnormal PGS indication) expected high levels of chromosome abnormalities were seen and no single nucleus displayed a normal complement; all were mosaic. Certain patterns emerged, however, namely that chromosome loss was more common than gain and apparent mitotic non-disjunction. Moreover, the centromeric probes tended preferentially to occupy the nuclear centre. Where we had a prior day 3 biopsy PGS result, it was confirmed, in part, by 24 colour FISH in most but not all cases.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center