Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Biol Cell. 2012 Aug;23(16):3143-55. doi: 10.1091/mbc.E12-05-0357. Epub 2012 Jun 27.

The CSC connects three major axonemal complexes involved in dynein regulation.

Author information

1
Biology Department, Rosenstiel Center, Brandeis University, Waltham, MA 02454, USA.

Abstract

Motile cilia and flagella are highly conserved organelles that play important roles in human health and development. We recently discovered a calmodulin- and spoke-associ-ated complex (CSC) that is required for wild-type motility and for the stable assembly of a subset of radial spokes. Using cryo-electron tomography, we present the first structure-based localization model of the CSC. Chlamydomonas flagella have two full-length radial spokes, RS1 and RS2, and a shorter RS3 homologue, the RS3 stand-in (RS3S). Using newly developed techniques for analyzing samples with structural heterogeneity, we demonstrate that the CSC connects three major axonemal complexes involved in dynein regulation: RS2, the nexin-dynein regulatory complex (N-DRC), and RS3S. These results provide insights into how signals from the radial spokes may be transmitted to the N-DRC and ultimately to the dynein motors. Our results also indicate that although structurally very similar, RS1 and RS2 likely serve different functions in regulating flagellar motility.

PMID:
22740634
PMCID:
PMC3418309
DOI:
10.1091/mbc.E12-05-0357
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center