Format

Send to

Choose Destination
Neural Comput. 2012 Oct;24(10):2726-50. doi: 10.1162/NECO_a_00332. Epub 2012 Jun 26.

Motion-based prediction is sufficient to solve the aperture problem.

Author information

1
Institut de Neurosciences de la Timone, CNRS/Aix-Marseille University 13385 Marseille Cedex 5, France. Laurent.Perrinet@univ-amu.fr

Abstract

In low-level sensory systems, it is still unclear how the noisy information collected locally by neurons may give rise to a coherent global percept. This is well demonstrated for the detection of motion in the aperture problem: as luminance of an elongated line is symmetrical along its axis, tangential velocity is ambiguous when measured locally. Here, we develop the hypothesis that motion-based predictive coding is sufficient to infer global motion. Our implementation is based on a context-dependent diffusion of a probabilistic representation of motion. We observe in simulations a progressive solution to the aperture problem similar to physiology and behavior. We demonstrate that this solution is the result of two underlying mechanisms. First, we demonstrate the formation of a tracking behavior favoring temporally coherent features independent of their texture. Second, we observe that incoherent features are explained away, while coherent information diffuses progressively to the global scale. Most previous models included ad hoc mechanisms such as end-stopped cells or a selection layer to track specific luminance-based features as necessary conditions to solve the aperture problem. Here, we have proved that motion-based predictive coding, as it is implemented in this functional model, is sufficient to solve the aperture problem. This solution may give insights into the role of prediction underlying a large class of sensory computations.

PMID:
22734489
PMCID:
PMC3472550
DOI:
10.1162/NECO_a_00332
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center