Format

Send to

Choose Destination
J Org Chem. 2012 Aug 3;77(15):6480-94. doi: 10.1021/jo300963m. Epub 2012 Jul 19.

meso-arylporpholactones and their reduction products.

Author information

1
Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA. c.bruckner@uconn.edu

Abstract

The rational syntheses of meso-tetraaryl-3-oxo-2-oxaporphyrins 5, known as porpholactones, via MnO(4)(-)-mediated oxidations of the corresponding meso-tetraaryl-2,3-dihydroxychlorins (7) is detailed. Since chlorin 7 is prepared from the parent porphyrin 1, this amounts to a 2-step replacement of a pyrrole moiety in 1 by an oxazolone moiety. The stepwise reduction of the porpholactone 5 results in the formation of chlorin analogues, meso-tetraaryl-3-hydroxy-2-oxachlorin (11) and meso-tetraaryl-2-oxachlorins (12). The reactivity of 11 with respect to nucleophilic substitution by O-, N-, and S-nucleophiles is described. The profound photophysical consequences of the formal replacement of a pyrrole with an oxazolone (porphyrin-like chromophore) or (substituted) oxazole moiety (chlorin-like chromophore with, for the parent oxazolochlorin 12, red-shifted Q(x) band with enhanced oscillator strengths) are detailed and rationalized on the basis of SAC-CI and MNDO-PSDCI molecular orbital theory calculations. The single crystal X-ray structures of the porpholactones point at a minor steric interaction between the carbonyl oxygen and the flanking phenyl group. The essentially planar structures of all chromophores in all oxidation states prove that the observed optical properties originate from the intrinsic electronic properties of the chromophores and are not subject to conformational modulation.

PMID:
22734444
PMCID:
PMC3411881
DOI:
10.1021/jo300963m
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center