Format

Send to

Choose Destination
Bioinformatics. 2012 Sep 15;28(18):2311-7. doi: 10.1093/bioinformatics/bts363. Epub 2012 Jun 25.

Integrating literature-constrained and data-driven inference of signalling networks.

Author information

1
Department of Information Engineering, University of Padova, Padova, 31050, Italy.

Abstract

MOTIVATION:

Recent developments in experimental methods facilitate increasingly larger signal transduction datasets. Two main approaches can be taken to derive a mathematical model from these data: training a network (obtained, e.g., from literature) to the data, or inferring the network from the data alone. Purely data-driven methods scale up poorly and have limited interpretability, whereas literature-constrained methods cannot deal with incomplete networks.

RESULTS:

We present an efficient approach, implemented in the R package CNORfeeder, to integrate literature-constrained and data-driven methods to infer signalling networks from perturbation experiments. Our method extends a given network with links derived from the data via various inference methods, and uses information on physical interactions of proteins to guide and validate the integration of links. We apply CNORfeeder to a network of growth and inflammatory signalling. We obtain a model with superior data fit in the human liver cancer HepG2 and propose potential missing pathways.

AVAILABILITY:

CNORfeeder is in the process of being submitted to Bioconductor and in the meantime available at www.cellnopt.org.

CONTACT:

saezrodriguez@ebi.ac.uk

SUPPLEMENTARY INFORMATION:

Supplementary data are available at Bioinformatics online.

PMID:
22734019
PMCID:
PMC3436796
DOI:
10.1093/bioinformatics/bts363
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center