Format

Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2012 Sep 28;422(4):466-76. doi: 10.1016/j.jmb.2012.06.009. Epub 2012 Jun 19.

Coordinated activities of human dicer domains in regulatory RNA processing.

Author information

1
Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.

Abstract

The conserved ribonuclease Dicer generates microRNAs and short-interfering RNAs that guide gene silencing in eukaryotes. The specific contributions of human Dicer's structural domains to RNA product length and substrate preference are incompletely understood, due in part to the difficulties of Dicer purification. Here, we show that active forms of human Dicer can be assembled from recombinant polypeptides expressed in bacteria. Using this system, we find that three distinct modes of RNA recognition give rise to Dicer's fidelity and product length specificity. The first involves anchoring one end of a double-stranded RNA helix within the PAZ domain, which can assemble in trans with Dicer's catalytic domains to reconstitute an accurate but non-substrate-selective dicing activity. The second entails nonspecific RNA binding by the double-stranded RNA binding domain, an interaction that is essential for substrate recruitment in the absence of the PAZ domain. The third mode of recognition involves hairpin RNA loop recognition by the helicase domain, which ensures efficient processing of specific substrates. These results reveal distinct interactions of each Dicer domain with different RNA structural features and provide a facile system for investigating the molecular mechanisms of human microRNA biogenesis.

PMID:
22727743
PMCID:
PMC3461841
DOI:
10.1016/j.jmb.2012.06.009
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center