Format

Send to

Choose Destination
See comment in PubMed Commons below
AIDS Res Hum Retroviruses. 2012 Dec;28(12):1543-51. doi: 10.1089/AID.2012.0142. Epub 2012 Aug 13.

HIV type 1 viral infectivity factor and the RUNX transcription factors interact with core binding factor β on genetically distinct surfaces.

Author information

1
Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.

Abstract

Human immunodeficiency virus type 1 (HIV-1) requires the cellular transcription factor core binding factor subunit β (CBFβ) to stabilize its viral infectivity factor (Vif) protein and neutralize the APOBEC3 restriction factors. CBFβ normally heterodimerizes with the RUNX family of transcription factors, enhancing their stability and DNA-binding affinity. To test the hypothesis that Vif may act as a RUNX mimic to bind CBFβ, we generated a series of CBFβ mutants at the RUNX/CBFβ interface and tested their ability to stabilize Vif and impact transcription at a RUNX-dependent promoter. While several CBFβ amino acid substitutions disrupted promoter activity, none of these impacted the ability of CBFβ to stabilize Vif or enhance degradation of APOBEC3G. A mutagenesis screen of CBFβ surface residues identified a single amino acid change, F68D, that disrupted Vif binding and its ability to degrade APOBEC3G. This mutant still bound RUNX and stimulated RUNX-dependent transcription. These separation-of-function mutants demonstrate that HIV-1 Vif and the RUNX transcription factors interact with cellular CBFβ on genetically distinct surfaces.

PMID:
22725134
PMCID:
PMC3505047
DOI:
10.1089/AID.2012.0142
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc. Icon for PubMed Central
    Loading ...
    Support Center