Send to

Choose Destination
J Org Chem. 2012 Jul 20;77(14):6051-8. doi: 10.1021/jo3008435. Epub 2012 Jul 3.

Design and synthesis of potential mechanism-based inhibitors of the aminotransferase BioA involved in biotin biosynthesis.

Author information

Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, USA.


BioA, a pyridoxal 5'-phosphate (PLP) dependent aminotransferase, catalyzes the second step of biotin biosynthesis, converting 7-keto-8-aminopelargonic acid (KAPA) into 7,8-diaminopelargonic acid (DAPA). Amiclenomycin (ACM) isolated from cultures of different Streptomyces strains is a potent mechanism-based inhibitor of BioA that operates via an aromatization mechanism, irreversibly labeling the PLP cofactor. However, ACM is plagued by inherent chemical stability. Herein we describe the synthesis of four inhibitors, inspired by ACM but containing an allylic amine as the chemical warhead, designed to both improve stability and operate via a complementary Michael addition-pathway upon enzymatic oxidation of the allylic amine substrate to an enimine. Acyclic analogue M-1 contains a terminal olefin as the pro-Michael acceptor. The synthesis of M-1 features an alkyne-zipper reaction and the Overman rearrangement as key synthetic operations. The cyclic analogues M-2/3/4 contain either an endocyclic or exocyclic olefin as the pro-Michael acceptor. These were all prepared using a common strategy employing DIBAL reduction of a precursor bicyclic lactam, followed by in situ Horner-Wadsworth-Emmons (HWE) olefination as the key synthetic steps.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center