Send to

Choose Destination
J Infect Dis. 2012 Sep 1;206(5):723-34. doi: 10.1093/infdis/jis413. Epub 2012 Jun 21.

Key role for respiratory CD103(+) dendritic cells, IFN-γ, and IL-17 in protection against Streptococcus pneumoniae infection in response to α-galactosylceramide.

Author information

Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, France.



Exogenous activation of pulmonary invariant natural killer T (iNKT) cells, a population of lipid-reactive αβ T lymphocytes, with use of mucosal α-galactosylceramide (α-GalCer) administration, is a promising approach to control respiratory bacterial infections. We undertook the present study to characterize mechanisms leading to α-GalCer-mediated protection against lethal infection with Streptococcus pneumoniae serotype 1, a major respiratory pathogen in humans.


α-GalCer was administered by the intranasal route before infection with S. pneumoniae. We showed that respiratory dendritic cells (DCs), most likely the CD103(+) subset, play a major role in the activation (IFN-γ and IL-17 release) of pulmonary iNKT cells, whereas alveolar and interstitial macrophages are minor players. After challenge, S. pneumoniae was rapidly (4 hours) eliminated in the alveolar spaces, a phenomenon that depended on respiratory DCs and neutrophils, but not macrophages, and on the early production of both IFN-γ and IL-17. Protection was also associated with the synthesis of various interferon-dependent and IL-17-associated genes as revealed by transcriptomic analysis.


These data imply a new function for pulmonary CD103(+) DCs in mucosal activation of iNKT cells and establish a critical role for both IFN-γ and IL-17 signalling pathways in mediating the innate immune response to S. pneumoniae.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center