Send to

Choose Destination
J Appl Physiol (1985). 2012 Aug 15;113(4):574-83. doi: 10.1152/japplphysiol.00523.2012. Epub 2012 Jun 21.

Influence of circulating cytokines on prolactin during slow vs. fast exertional heat stress followed by active or passive recovery.

Author information

Faculty of Health Sciences, Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.


Prolactin (PRL) has been suggested as an indicator of fatigue during exertional heat stress (EHS), given its strong relationship with body core temperature (T(c)); however, the strength of this relationship during different rates of T(c) increase and subsequent recovery is unknown. In addition, given the influence that systemic cytokines, such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α, have on the pituitary gland, it would be of interest to determine the relationship between PRL, IL-6, and TNF-α during EHS. The purpose was to examine the PRL, IL-6, and TNF-α heat stress responses during slow and fast heating and subsequent resting or cold water immersion recovery. On 4 days, nine individuals walked at ≈ 45% (slow heating) or ran at ≈ 65% (fast heating) maximal oxygen consumption on a treadmill in the heat (40°C, 30% relative humidity) until rectal temperature (T(re)) reached 39.5°C (esophageal temperature; fast = 39.41 ± 0.04°C, slow = 39.82 ± 0.09°C). Post-EHS, subjects were either immersed in 2°C water or rested seated until T(re) returned to 38.0°C. Venous blood, analyzed for PRL, IL-6, and TNF-α, was obtained at rest, during exercise (T(re) 38.0, 39.0, 39.5°C), the start of recovery (≈ 5 min after 39.5°C), and subsequent recovery (T(re) 39.0, 38.0°C). IL-6 exhibited myokine properties, given the greater increases with slow heating and lack of increase in TNF-α. A strong temperature-dependent PRL response during slow and fast heating provides additional support for the use of PRL as a peripheral marker of impending fatigue, which is independent of IL-6 and TNF-α cytokine responses.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center