Format

Send to

Choose Destination
Nature. 2012 Jun 20;486(7403):382-5. doi: 10.1038/nature11178.

Electronic nematicity above the structural and superconducting transition in BaFe2(As(1-x)P(x))2.

Author information

1
Department of Physics, Kyoto University, Kyoto 606-8502, Japan.

Abstract

Electronic nematicity, a unidirectional self-organized state that breaks the rotational symmetry of the underlying lattice, has been observed in the iron pnictide and copper oxide high-temperature superconductors. Whether nematicity plays an equally important role in these two systems is highly controversial. In iron pnictides, the nematicity has usually been associated with the tetragonal-to-orthorhombic structural transition at temperature T(s). Although recent experiments have provided hints of nematicity, they were performed either in the low-temperature orthorhombic phase or in the tetragonal phase under uniaxial strain, both of which break the 90° rotational C(4) symmetry. Therefore, the question remains open whether the nematicity can exist above T(s) without an external driving force. Here we report magnetic torque measurements of the isovalent-doping system BaFe(2)(As(1-x)P(x))(2), showing that the nematicity develops well above T(s) and, moreover, persists to the non-magnetic superconducting regime, resulting in a phase diagram similar to the pseudogap phase diagram of the copper oxides. By combining these results with synchrotron X-ray measurements, we identify two distinct temperatures-one at T*, signifying a true nematic transition, and the other at T(s) (<T*), which we show not to be a true phase transition, but rather what we refer to as a 'meta-nematic transition', in analogy to the well-known meta-magnetic transition in the theory of magnetism.

PMID:
22722198
DOI:
10.1038/nature11178

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center