Send to

Choose Destination
Biochemistry. 1990 Oct 2;29(39):9143-9.

Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids.

Author information

Department of Biochemistry, University of Virginia Health Sciences Center, Charlottesville 22908.


The effect of lipid ordering on the kinetics and extent of metarhodopsin II (meta II) formation was evaluated in bovine rhodopsin which had been reconstituted into phosphatidylcholine vesicles containing 0, 15, and 30 mol% cholesterol. The rate of establishment of the dynamic equilibrium between metarhodopsin I (meta I) and the two kinetically distinguished forms of meta II in the branched meta II model [meta IIfast and meta IIslow; Straume, M., Mitchell, D. C., Miller, J. L., & Litman, B. J. (1990) Biochemistry (preceding paper in this issue)] is derived from kinetic measurements of rhodopsin photolysis in these vesicle systems at several temperatures. Values of the meta I in equilibrium with meta IItotal equilibrium constant, Keq, are calculated from the derived model-dependent rate constants, and are shown to be equivalent to those derived from rapidly acquired absorbance spectra. The presence of 30 mol% cholesterol reduces Keq by approximately 50% between 10 and 37 degrees C. Analysis of the model-dependent parameters in terms of delta H and delta S reveals that cholesterol raises the free energy of meta IIslow, relative to meta I, by increasing delta H whereas it raises the relative free energy of meta IIfast by making delta S meta IIfast relative to meta I less positive. The reduction in Keq by both temperature and cholesterol is found to be directly correlated with a parameter that reflects the free volume available for molecular motion in the hydrophobic core of the bilayer [Straume, M., & Litman, B. J. (1988) Biochemistry 27, 7723-7733].(ABSTRACT TRUNCATED AT 250 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center