Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2012 Oct 15;63(1):179-93. doi: 10.1016/j.neuroimage.2012.06.011. Epub 2012 Jun 17.

A NIRS-fMRI study of resting state network.

Author information

1
Graduate School of Education, The University of Tokyo, Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. sasai@p.u-tokyo.ac.jp

Abstract

Resting state functional connectivity, which is defined as temporal correlation of spontaneous activity between diverse brain regions, has been reported to form resting state networks (RSNs), consisting of a specific set of brain regions, based on functional magnetic resonance imaging (fMRI). Recently, studies using near-infrared spectroscopy (NIRS) reported that NIRS signals also show temporal correlation between different brain regions. The local relationship between NIRS and fMRI signals has been examined by simultaneously recording these signals when participants perform tasks or respond to stimuli. However, the NIRS-fMRI signal relationship during the resting state has been reported only between NIRS signals obtained within limited regions and whole brain fMRI signals. Therefore, it remains unclear whether NIRS signals obtained at diverse regions correlate with regional fMRI signals close to the NIRS measurement channels, especially in relation to the RSNs. In this study, we tested whether the signals measured by these different modalities during the resting state have the consistent characteristics of the RSNs. Specifically, NIRS signals during the resting state were acquired over the frontal, temporal, and occipital cortices while whole brain fMRI data was simultaneously recorded. First, by projecting the NIRS channel positions over the cerebral cortical surface, we identified the most likely anatomical locations of all NIRS channels used in the study. Next, to investigate the regional signal relationship between NIRS and fMRI, we calculated the cross-correlation between NIRS signals and fMRI signals in the brain regions adjacent to each NIRS channel. For each NIRS channel, we observed the local maxima of correlation coefficients between NIRS and fMRI signals within a radius of 2 voxels from the projection point. Furthermore, we also found that highly correlated voxels with the NIRS signal were mainly localized within brain tissues for all NIRS channels, with the exception of 2 frontal channels. Finally, by calculating the correlation between NIRS signals at a channel and whole brain fMRI signals, we observed that NIRS signals correlate with fMRI signals not only within brain regions adjacent to NIRS channels but also within distant brain regions constituting RSNs, such as the dorsal attention, fronto-parietal control, and default mode networks. These results support the idea that NIRS signals obtained at several cortical regions during the resting state mainly reflect regional spontaneous hemodynamic fluctuations that originate from spontaneous cortical activity, and include information that characterizes the RSNs. Because NIRS is relatively easy to use and a less physically demanding neuroimaging technique, our findings should facilitate a broad application of this technique to examine RSNs, especially for clinical populations and conditions unsuitable for fMRI.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center