Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 2012 Jun 6;102(11):2556-63. doi: 10.1016/j.bpj.2012.04.020. Epub 2012 Jun 5.

Oxygen depletion triggers switching between discrete speed modes of gonococcal type IV pili.

Author information

Faculty of Mathematical and Natural Sciences, University of Cologne, Cologne, Germany.


Type IV pili are polymeric bacterial appendages that affect host cell interaction, motility, biofilm formation, and horizontal gene transfer. These force-generating motors work in at least three distinct velocity modes-elongation, and retraction at two distinct speeds, high and low. Yet it is unclear which regulatory inputs control their speeds. Here, we addressed this question for the human pathogen Neisseria gonorrhoeae. Using a combination of image analysis and surface analytics, we simultaneously monitored the speed of twitching motility and the concentration of oxygen. While oxygen was detectable, bacteria moved in the high-speed mode (1.5 μm/s). Upon full depletion of oxygen, gonococci simultaneously switched into the low-speed mode (0.5 μm/s). Speed switching was complete within seconds, independent of transcription, and reversible upon oxygen restoration. Using laser tweezers, we found that oxygen depletion triggered speed switching of the pilus motor at the single-molecule level. In the transition regime, single pili switched between both modes, indicating bistability. Switching is well described by a two-state model whereby the oxygen level controls the occupancy of the states.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center