Send to

Choose Destination
J Am Chem Soc. 2012 Jul 18;134(28):11362-5. doi: 10.1021/ja303579d. Epub 2012 Jul 5.

New Delhi metallo-β-lactamase: structural insights into β-lactam recognition and inhibition.

Author information

Department of Biochemistry and Molecular Biology and Center for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3.


The β-lactam antibiotics have long been a cornerstone for the treatment of bacterial disease. Recently, a readily transferable antibiotic resistance factor called the New Delhi metallo-β-lactamase-1 (NDM-1) has been found to confer enteric bacteria resistance to nearly all β-lactams, including the heralded carbapenems, posing a serious threat to human health. The crystal structure of NDM-1 bound to meropenem shows for the first time the molecular details of how carbapenem antibiotics are recognized by dizinc-containing metallo-β-lactamases. Additionally, product complex structures of hydrolyzed benzylpenicillin-, methicillin-, and oxacillin-bound NDM-1 have been solved to 1.8, 1.2, and 1.2 Å, respectively, and represent the highest-resolution structural data for any metallo-β-lactamase reported to date. Finally, we present the crystal structure of NDM-1 bound to the potent competitive inhibitor l-captopril, which reveals a unique binding mechanism. An analysis of the NDM-1 active site in these structures reveals key features important for the informed design of novel inhibitors of NDM-1 and other metallo-β-lactamases.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center