Format

Send to

Choose Destination
See comment in PubMed Commons below
Gen Comp Endocrinol. 2012 Sep 1;178(2):250-8. doi: 10.1016/j.ygcen.2012.06.007. Epub 2012 Jun 15.

Changes in plasma angiotensin subtypes in Japanese eel acclimated to various salinities from deionized water to double-strength seawater.

Author information

1
Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan. martywong@aori.u-tokyo.ac.jp

Abstract

Our knowledge of complexity of the renin-angiotensin system (RAS) has grown in recent years and various angiotensin peptides including Ang II, Ang III, Ang IV, and Ang (1-7) were found to have specific functions. Using a combination of HPLC and radioimmunoassay (RIA), we established a high resolution method to quantify various angiotensin subtypes in the plasma of eel acclimated to deionized water (dW), freshwater (FW), seawater (SW), and double-strength seawater (DSW). [Asn(1), Val(5)]-Ang II, [Asp(1), Val(5)]-Ang II, [Val(4)]-Ang III, and [Val(3)]-Ang IV are all present in the circulation and both Ang II subtypes were significantly higher in DSW eel. When the eel was transferred from FW to SW, plasma immunoreactive (ir) Ang II concentration increased and its levels were highly correlated to plasma osmolality, suggesting that the elevated plasma osmolality is the major stimulus for activating the RAS during high salinity transfer. To examine the conversion of [Asn(1)] to [Asp(1)] residue in vivo and in vitro, synthetic [Asn(1), Val(5)]-Ang II was injected into the circulation or incubated with plasma, but the production of [Asp(1), Val(5)]-Ang II was insignificant, which implies that the conversion may occur at the angiotensinogen level. An asparaginase assay was further developed for measuring asparaginase activity and the highest activity was in liver in both FW and SW eel. This new method of analysis can be extended to study the endogenous angiotensin ligands in the local RAS. The potential significance of [Asn(1)] to [Asp(1)] conversion on Ang II metabolism and function is discussed.

PMID:
22705037
DOI:
10.1016/j.ygcen.2012.06.007
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center