Format

Send to

Choose Destination
Schizophr Res. 2012 Aug;139(1-3):246-52. doi: 10.1016/j.schres.2012.05.022. Epub 2012 Jun 15.

Visual sensory processing deficits in schizophrenia: is there anything to the magnocellular account?

Author information

1
The Cognitive Neurophysiology Laboratory, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA. edlalor@tcd.ie

Abstract

Visual processing studies have repeatedly shown impairment in patients with schizophrenia compared to healthy controls. Electroencephalography (EEG) and, specifically, visual evoked potential (VEP) studies have identified an early marker of this impairment in the form of a decrement in the P1 component of the VEP in patients and their clinically unaffected first-degree relatives. Much behavioral and neuroimaging research has implicated specific dysfunction of either the subcortical magnocellular pathway or the cortical visual dorsal stream in this impairment. In this study, EEG responses were obtained to the contrast modulation of checkerboard stimuli using the VESPA (Visual Evoked Spread Spectrum Analysis) method. This was done for a high contrast condition and, in order to bias the stimuli towards the magnocellular pathway, a low contrast condition. Standard VEPs were also obtained using high contrast pattern reversing checkerboards. Responses were measured using high-density electrical scalp recordings in 29 individuals meeting DSM-IV criteria for schizophrenia and in 18 control subjects. Replicating previous research, a large (Cohen's d=1.11) reduction in the P1 component of the VEP was seen in patients when compared with controls with no corresponding difference in the VESPA response to high contrast stimuli. In addition, the low-contrast VESPA displayed no difference between patients and controls. Furthermore, no differences were seen between patients and controls for the C1 components of either the VEP or the high-contrast VESPA. Based on the differing acquisition methods between VEP and VESPA, we discuss these results in terms of contrast gain control and the possibility of dysfunction at the cortical level with initial afferent activity into V1 along the magnocellular pathway being intact when processing is biased towards that pathway using low contrast stimuli.

PMID:
22704644
PMCID:
PMC3393820
DOI:
10.1016/j.schres.2012.05.022
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center