Ruthenium polypyridyl complexes hopping at anionic lipid bilayers through a supramolecular bond sensitive to visible light

Chemistry. 2012 Aug 13;18(33):10271-80. doi: 10.1002/chem.201200624. Epub 2012 Jun 13.

Abstract

The new ruthenium complex [Ru(terpy)(dcbpy)(Hmte)](PF(6))(2) ([2](PF(6))(2); dcbpy=6,6'-dichloro-2,2'-bipyridine, terpy=2,2';6',2"-terpyridine, Hmte=2-(methylthio)ethanol) was synthesized. In the crystal structure, this complex is highly distorted, revealing steric congestion between dcbpy and Hmte. In water, [2](2+) forms spontaneously by reacting Hmte and the aqua complex [Ru(terpy)(dcbpy)(OH(2))](2+) ([1](2+)), with a second-order rate constant of 0.025 s(-1) M(-1) at 25 °C. In the dark, the Ru-S bond of [2](2+) is thermally unstable and partially hydrolyzes; in fact, [1](2+) and [2](2+) are in an equilibrium characterized by an equilibrium constant K of 151 M(-1). When exposed to visible light, the Ru-S bond is selectively broken to release [1](2+), that is, the equilibrium is shifted by visible-light irradiation. The light-induced equilibrium shifts were repeated four times without major signs of degradation; the Ru-S coordination bond in [2](2+) can be described as a robust, light-sensitive, supramolecular bond in water. To demonstrate the potential of this system in supramolecular chemistry, a new thioether-cholesterol conjugate (4), which inserts into lipid bilayers through its cholesterol moiety and coordinates to ruthenium through its sulfur atom, was synthesized. Thioether-functionalized, anionic, dimyristoylphosphatidylglycerol (DMPG), lipid vesicles, to which aqua complex [1](2+) efficiently coordinates, were prepared. Upon exposure of the Ru-decorated vesicles to visible light, the Ru-S bond is selectively broken, thus releasing [1](2+) that stays at the water-bilayer interface. When the light is switched off, the metal complex spontaneously coordinates back to the membrane-embedded thioether ligands without a need to heat the system. This process was repeated four times at 35 °C, thus achieving light-triggered hopping of the metal complex at the water-bilayer interface.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anions / chemistry*
  • Coordination Complexes / chemistry*
  • Crystallography, X-Ray
  • Ligands
  • Light
  • Lipid Bilayers / chemistry*
  • Molecular Structure
  • Photochemistry
  • Pyridines / chemistry*
  • Ruthenium / chemistry*

Substances

  • Anions
  • Coordination Complexes
  • Ligands
  • Lipid Bilayers
  • Pyridines
  • Ruthenium