Send to

Choose Destination
Biomaterials. 2012 Sep;33(27):6476-84. doi: 10.1016/j.biomaterials.2012.05.041. Epub 2012 Jun 12.

Self-assembled peptide nanofibers raising durable antibody responses against a malaria epitope.

Author information

Department of Surgery, University of Chicago, Chicago, IL 60637, USA.


Biomaterials that modulate innate and adaptive immune responses are receiving increasing interest as adjuvants for eliciting protective immunity against a variety of diseases. Previous results have indicated that self-assembling β-sheet peptides, when fused with short peptide epitopes, can act as effective adjuvants and elicit robust and long-lived antibody responses. Here we investigated the mechanism of immunogenicity and the quality of antibody responses raised by a peptide epitope from Plasmodium falciparum circumsporozoite (CS) protein, (NANP)(3),conjugated to the self-assembling peptide domain Q11. The mechanism of adjuvant action was investigated in knockout mice with impaired MyD88, NALP3, TLR-2, or TLR-5 function, and the quality of antibodies raised against (NANP)(3)-Q11 was assessed using a transgenic sporozoite neutralizing (TSN) assay for malaria infection. (NANP)(3)-Q11 self-assembled into nanofibers, and antibody responses lasted up to 40 weeks in C57BL/6 mice. The antibody responses were T cell- and MyD88-dependent. Sera from mice primed with either irradiated sporozoites or a synthetic peptide, (T1BT*)(4)-P3C, and boosted with (NANP)(3)-Q11 showed significant increases in antibody titers and significant inhibition of sporozoite infection in TSN assays. In addition, two different epitopes could be self-assembled together without compromising the strength or duration of the antibody responses raised against either of them, making these materials promising platforms for self-adjuvanting multi-antigenic immunotherapies.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center