Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Endocrinol Metab. 2012 Aug 15;303(4):E488-95. doi: 10.1152/ajpendo.00110.2012. Epub 2012 Jun 12.

Activation of genes involved in xenobiotic metabolism is a shared signature of mouse models with extended lifespan.

Author information

1
Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA.

Abstract

Xenobiotic metabolism has been proposed to play a role in modulating the rate of aging. Xenobiotic metabolizing enzymes (XME) are expressed at higher levels in calorically restricted mice (CR) and in GH/IGF-I-deficient, long-lived mutant mice. In this study, we show that many phase I XME genes are similarly upregulated in additional long-lived mouse models, including "crowded litter" (CL) mice, whose lifespan has been increased by food restriction limited to the first 3 wk of life, and in mice treated with rapamycin. Induction in the CL mice lasts at least through 22 mo of age, but induction by rapamycin is transient for many of the mRNAs. Cytochrome P-450s, flavin monooxygenases, hydroxyacid oxidase, and metallothioneins were found to be significantly elevated in similar proportions in each of the models of delayed aging tested, whether these were based on mutation, diet, drug treatment, or transient early intervention. The same pattern of mRNA elevation could be induced by 2 wk of treatment with tert-butylhydroquinone, an oxidative toxin known to activate Nrf2-dependent target genes. These results suggest that elevation of phase I XMEs is a hallmark of long-lived mice and may facilitate screens for agents worth testing in intervention-based lifespan studies.

PMID:
22693205
PMCID:
PMC3423099
DOI:
10.1152/ajpendo.00110.2012
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center