Send to

Choose Destination
Eur J Biochem. 1990 Dec 12;194(2):389-97.

Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications.

Author information

Centre National de la Recherche Scientifique, Biosystèmes Membranaires, Gif-sur-Yvette, France.


Washed and purified rat- or mouse-liver mitochondria exhibiting high membrane integrity and metabolic activity were studied by flow cytometry. The electrophoretic accumulation/redistribution of cationic lipophilic probes, rhodamine 123, safranine O and a cyanine derivative, 3,3'-dihexyloxadicarbocyanine iodide, during the energization process was studied and was consistent with the generation of a negative internal membrane potential. An exception to this was nonylacridine orange which spontaneously bound to the mitochondrial membrane by hydrophobic interactions via its hydrocarbon chain. Energized purified mitochondria stained with potentiometric dyes exhibited both higher fluorescence and population homogeneity than the non-energized or deenergized (nigericin plus valinomycin) mitochondria. By contrast, under non-energized or deenergized conditions, the mitochondrial population exhibited fluorescence intensity heterogeneity related to the residual membrane potential; two subpopulations were evident, one of low fluorescence which may be related to the autofluorescence of the mitochondria (plus non-specific dye binding) and a second population which exhibited high fluorescence. Flow cytometry of the unpurified, simply washed, rat-liver mitochondria stained with rhodamine 123, a classically used dye, provided evidence of their heterogeneity in terms of light-scattering properties and membrane-potential-related fluorescence. One third of the washed mitochondria were found to be non-functional by such assays. The fluorescence of purified rat-liver mitochondria due to the membrane potential built up by endogenous substrates indicates heterogeneity of the mitochondrial population with respect to levels of endogenous substrates. The low-angle light scattering increases upon energization and provides some original information about the shape and modification of the inner mitochondrial conformation accompanying the energization. The heterogeneity of the rat liver mitochondrial population, from a structural, metabolic (existence of endogenous substrates) and functional (active and non-active mitochondrial population dispersion) point of view could thus be demonstrated by flow-cytometry analysis. Two animal models were examined with regard to the alteration of the mitochondrial membrane potential under the effects of drugs (rat-liver mitochondria), and the effects of ammonium toxicity (mouse-liver mitochondria). These results are promising and open new perspectives in the study of mitochondriopathies.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center