Format

Send to

Choose Destination
See comment in PubMed Commons below
BMC Syst Biol. 2012 Jun 12;6:63. doi: 10.1186/1752-0509-6-63.

Network methods for describing sample relationships in genomic datasets: application to Huntington's disease.

Author information

1
Department of Neurology, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA. oldhamm@stemcell.ucsf.edu

Abstract

BACKGROUND:

Genomic datasets generated by new technologies are increasingly prevalent in disparate areas of biological research. While many studies have sought to characterize relationships among genomic features, commensurate efforts to characterize relationships among biological samples have been less common. Consequently, the full extent of sample variation in genomic studies is often under-appreciated, complicating downstream analytical tasks such as gene co-expression network analysis.

RESULTS:

Here we demonstrate the use of network methods for characterizing sample relationships in microarray data generated from human brain tissue. We describe an approach for identifying outlying samples that does not depend on the choice or use of clustering algorithms. We introduce a battery of measures for quantifying the consistency and integrity of sample relationships, which can be compared across disparate studies, technology platforms, and biological systems. Among these measures, we provide evidence that the correlation between the connectivity and the clustering coefficient (two important network concepts) is a sensitive indicator of homogeneity among biological samples. We also show that this measure, which we refer to as cor(K,C), can distinguish biologically meaningful relationships among subgroups of samples. Specifically, we find that cor(K,C) reveals the profound effect of Huntington's disease on samples from the caudate nucleus relative to other brain regions. Furthermore, we find that this effect is concentrated in specific modules of genes that are naturally co-expressed in human caudate nucleus, highlighting a new strategy for exploring the effects of disease on sets of genes.

CONCLUSIONS:

These results underscore the importance of systematically exploring sample relationships in large genomic datasets before seeking to analyze genomic feature activity. We introduce a standardized platform for this purpose using freely available R software that has been designed to enable iterative and interactive exploration of sample networks.

PMID:
22691535
PMCID:
PMC3441531
DOI:
10.1186/1752-0509-6-63
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center