Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biomol Struct Dyn. 2012;30(3):269-79. doi: 10.1080/07391102.2012.680028. Epub 2012 Jun 11.

Carbon monoxide binding to the heme group at the dimeric interface modulates structure and copper accessibility in the Cu,Zn superoxide dismutase from Haemophilus ducreyi: in silico and in vitro evidences.

Author information

1
CASPUR, Consortium for Supercomputing Applications, Rome, Italy. g.chillemi@caspur.it

Abstract

X-ray absorption near-edge structure (XANES) spectroscopy and molecular dynamics (MD) simulations have been jointly applied to the study of the Cu,Zn superoxide dismutase from Haemophilus ducreyi (HdSOD) in interaction with the carbon monoxide molecule. The configurational flexibility of the Fe(II)-heme group, intercalated between the two subunits, has been sampled by MD simulations and included in the XANES data analysis without optimization in the structural parameter space. Our results provide an interpretation of the observed discrepancy in the Fe-heme distances as detected by extended X-ray absorption fine structure (EXAFS) spectroscopy and the classical XANES analysis, in which the structural parameters are optimized in a unique structure. Moreover, binding of the CO molecule to the heme induces a long range effect on the Cu,Zn active site, as evidenced by both MD simulations and in vitro experiments. MD simulation of the CO bound system, in fact, highlighted a structural rearrangement of the protein-protein hydrogen bond network in the region of the Cu,Zn active site, correlated with an increase in water accessibility at short distance from the copper atom. In line, in vitro experiments evidenced an increase of copper accessibility to a chelating agent when the CO molecule binds to the heme group, as compared to a heme deprived HdSOD. Altogether, our results support the hypothesis that the HdSOD is a heme-sensor protein, in which binding to small gaseous molecules modulates the enzyme superoxide activity as an adaptive response to the bacterial environment.

PMID:
22686457
DOI:
10.1080/07391102.2012.680028
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center