Send to

Choose Destination
PLoS One. 2012;7(6):e36878. doi: 10.1371/journal.pone.0036878. Epub 2012 Jun 7.

Comparative analysis of the 5S rRNA and its associated proteins reveals unique primitive rather than parasitic features in Giardia lamblia.

Author information

State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People's Republic of China.



5S rRNA is a highly conserved ribosomal component. Eukaryotic 5S rRNA and its associated proteins (5S rRNA system) have become very well understood. Giardia lamblia was thought by some researchers to be the most primitive extant eukaryote while others considered it a highly evolved parasite. Previous reports have indicated that some aspects of its 5S rRNA system are simpler than that of common eukaryotes. We here explore whether this is true to its entire system, and whether this simplicity is a primitive or parasitic feature.


By collecting and confirming pre-existing data and identifying new data, we obtained almost complete datasets of the system of three isolates of G. lamblia, two other parasitic excavates (Trichomonas vaginalis, Trypanosoma cruzi), and one free-living one (Naegleria gruberi). After comprehensively comparing each aspect of the system among these excavates and also with those of archaea and common eukaryotes, we found all the three Giardia isolates to harbor a same simplified 5S rRNA system, which is not only much simpler than that of common eukaryotes but also the simplest one among those of these excavates, and is surprisingly very similar to that of archaea; we also found among these excavates the system in parasitic species is not necessarily simpler than that in free-living species, conversely, the system of free-living species is even simpler in some respects than those of parasitic ones.


The simplicity of Giardia 5S rRNA system should be considered a primitive rather than parasitically-degenerated feature. Therefore, Giardia 5S rRNA system might be a primitive system that is intermediate between that of archaea and the common eukaryotic model system, and it may reflect the evolutionary history of the eukaryotic 5S rRNA system from the archaeal form. Our results also imply G. lamblia might be a primitive eukaryote with secondary parasitically-degenerated features.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center