Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2012 Jul 27;287(31):26087-93. doi: 10.1074/jbc.M112.372292. Epub 2012 Jun 8.

Phosphorylation of adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif 1 (APPL1) at Ser430 mediates endoplasmic reticulum (ER) stress-induced insulin resistance in hepatocytes.

Author information

1
Department of Pharmacology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas 78229, USA. lium2@uthscsa.edu

Abstract

APPL1 is an adaptor protein that plays a critical role in regulating adiponectin and insulin signaling. However, how APPL1 is regulated under normal and pathological conditions remains largely unknown. In this study, we show that APPL1 undergoes phosphorylation at Ser(430) and that this phosphorylation is enhanced in the liver of obese mice displaying insulin resistance. In cultured mouse hepatocytes, APPL1 phosphorylation at Ser(430) is stimulated by phorbol 12-myristate 13-acetate, an activator of classic PKC isoforms, and by the endoplasmic reticulum (ER) stress inducer, thapsigargin. Overexpression of wild-type but not dominant negative PKCα increases APPL1 phosphorylation at Ser(430) in mouse hepatocytes. In addition, suppressing PKCα expression by shRNA in hepatocytes reduces ER stress-induced APPL1 phosphorylation at Ser(430) as well as the inhibitory effect of ER stress on insulin-stimulated Akt phosphorylation. Consistent with a negative regulatory role of APPL1 phosphorylation at Ser(430) in insulin signaling, overexpression of APPL1(S430D) but not APPL1(S430A) impairs the potentiating effect of APPL1 on insulin-stimulated Akt phosphorylation at Thr(308). Taken together, our results identify APPL1 as a novel target in ER stress-induced insulin resistance and PKCα as the kinase mediating ER stress-induced phosphorylation of APPL1 at Ser(430).

PMID:
22685300
PMCID:
PMC3406692
DOI:
10.1074/jbc.M112.372292
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center