Format

Send to

Choose Destination
See comment in PubMed Commons below
Osteoporos Int. 2013 Mar;24(3):1035-44. doi: 10.1007/s00198-012-2041-7. Epub 2012 Jun 9.

Cortical and trabecular bone at the radius and tibia in male and female adolescents with Down syndrome: a peripheral quantitative computed tomography (pQCT) study.

Author information

1
Growth, Exercise, Nutrition and Development Research Group, Department of Physiatry and Nursing, Faculty of Health and Sport Sciences, FCSD, University of Zaragoza, Huesca, Spain. alexgonz@unizar.es

Abstract

We aimed to describe the structure and strength of the tibia and radius of adolescents with Down syndrome. We observed that despite higher levels of volumetric bone mineral density in determined skeletal sites, they are at higher risk of developing osteoporotic fractures in the future due to their lower bone strength indexes.

INTRODUCTION:

The aims of the study were to describe the cortical and trabecular volumetric bone mineral density (vBMD), bone mineral content (BMC), area, and bone strength in adolescents with Down syndrome (DS) and to compare them with adolescents without disabilities.

METHODS:

Thirty adolescents (11 girls) with DS and 28 without disabilities (10 girls) participated in the study. Peripheral quantitative computed tomography measurements were taken at proximal and distal sites of the tibia and radius. Values of total, trabecular, and cortical BMC; vBMD; and area were obtained of each scan. Cortical thickness and endosteal and periosteal circumferences were also measured, and different bone strength indexes were calculated. Student's t tests were applied between groups.

RESULTS:

The DS group showed greater vBMD at distal radius, BMC at proximal radius, and total and cortical vBMD at proximal tibia. The non-DS group showed higher total and trabecular area at the distal radius and total, cortical, and trabecular BMC and area at distal tibia. Higher values of periosteal and endosteal circumference and bone strength were also found in non-DS group.

CONCLUSIONS:

From these results, it can be believed that even with higher vBMD in determined skeletal sites, adolescents with DS are at higher risk of suffering bone fractures due to an increased fragility by lower resistance to load bending or torsion.

PMID:
22684498
DOI:
10.1007/s00198-012-2041-7
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center