Send to

Choose Destination
Bioconjug Chem. 2012 Aug 15;23(8):1524-33. doi: 10.1021/bc200624a. Epub 2012 Jul 11.

Glycoengineering approach to half-life extension of recombinant biotherapeutics.

Author information

Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Exhibition Road, London, UK, SW7 2AZ.


The potential for protein-engineered biotherapeutics is enormous, but pharmacokinetic modulation is a major challenge. Manipulating pharmacokinetics, biodistribution, and bioavailability of small peptide/protein units such as antibody fragments is a major pharmaceutical ambition, illustrated by the many chemical conjugation and recombinant fusion approaches being developed. We describe a recombinant approach that leads to successful incorporation of polysialic acid, PSA for the first time, onto a therapeutically valuable protein. This was achieved by protein engineering of the PSA carrier domain of NCAM onto single-chain Fv antibody fragments (one directed against noninternalizing carcinoembryonic antigen-CEA and one against internalizing human epidermal growth factor receptor-2-HER2). This created novel polysialylated antibody fragments with desired pharmacokinetics. Production was achieved in human embryonic kidney cells engineered to express human polysialyltransferase, and the recombinant, glycosylated product was successfully fractionated by ion-exchange chromatography. Polysialylation was verified by glycosidase digestion and mass spectrometry, which showed the correct glycan structures and PSA chain length similar to that of native NCAM. Binding was demonstrated by ELISA and surface plasmon resonance and on live cells by flow cytometry and confocal immunofluorescence. Unexpectedly, polysialylation inhibited receptor-mediated endocytosis of the anti-HER2 scFv. Recombinant polysialylation led to an estimated 3-fold increase in hydrodynamic radius, comparable to PEGylation, leading to an almost 30-fold increase in blood half-life and a similar increase in blood exposure. This increase in bioavailability led to a 12-fold increase in tumor uptake by 24 h. In summary, recombinant polysialylation of antibody fragments in our system is a novel and feasible approach applicable for pharmacokinetic modulation, and may have wider applications.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center