SNARE catalyzed granule fusion in mast cells. (A) Secretion of mediators requires fusion of vesicle and plasma membranes. Upon activation through FcεRI secretory granules translocate to and dock at the plasma membrane where the t-SNAREs SNAP-23 and STX4 together with the v-SNARE VAMP8 form stable tetrameric complexes of bundled helices bringing the lipid bilayers into a close distance to catalyze membrane fusion. The SNARE motifs of SNAP-23, STX4, and VAMP8, which become highly organized in the four helical bundle during the formation of the trans-SNARE complex are highlighted in color. (B) The primary structure of human SNAP-23, STX4, and VAMP8 as adapted from Hong () is shown with SNARE motifs for each protein in like colors. STX4 and VAMP8 have C-terminal transmembrane domains (TM), whereas the linker domain of SNAP-23, which connects the two SNARE motifs, has a membrane anchor domain, consisting of palmitoylated cysteine residues (M). Numbers indicate protein or domain boundaries, arrows indicate potential phosphorylation sites (http://www.phosphosite.org). Phosphorylation of mouse SNAP-23 on Ser95 and Ser120 was found to modulate regulated mast cell exocytosis (Hepp et al., ), whereas phosphorylation of STX4 was not altered during secretion in RBL cells (Pombo et al., ).