Send to

Choose Destination
J Phys Chem B. 2012 Jul 5;116(26):7652-9. doi: 10.1021/jp2098679. Epub 2012 Jun 25.

Cyclodextrin-scaffolded alamethicin with remarkably efficient membrane permeabilizing properties and membrane current conductance.

Author information

Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark.


Bacterial resistance to classical antibiotics is a serious medical problem, which continues to grow. Small antimicrobial peptides represent a potential solution and are increasingly being developed as novel therapeutic agents. Many of these peptides owe their antibacterial activity to the formation of trans-membrane ion-channels resulting in cell lysis. However, to further develop the field of peptide antibiotics, a thorough understanding of their mechanism of action is needed. Alamethicin belongs to a class of peptides called peptaibols and represents one of these antimicrobial peptides. To examine the dynamics of assembly and to facilitate a thorough structural evaluation of the alamethicin ion-channels, we have applied click chemistry for the synthesis of templated alamethicin multimers covalently attached to cyclodextrin-scaffolds. Using oriented circular dichroism, calcein release assays, and single-channel current measurements, the α-helices of the templated multimers were demonstrated to insert into lipid bilayers forming highly efficient and remarkably stable ion-channels.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center