Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(6):e38614. doi: 10.1371/journal.pone.0038614. Epub 2012 Jun 4.

LSK derived LSK- cells have a high apoptotic rate related to survival regulation of hematopoietic and leukemic stem cells.

Author information

  • 1Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America.

Abstract

A balanced pool of hematopoietic stem cells (HSCs) in bone marrow is tightly regulated, and this regulation is disturbed in hematopoietic malignancies such as chronic myeloid leukemia (CML). The underlying mechanisms are largely unknown. Here we show that the Lin(-)Sca-1(+)c-Kit(-) (LSK(-)) cell population derived from HSC-containing Lin(-)Sca-1(+)c-Kit(+) (LSK) cells has significantly higher numbers of apoptotic cells. Depletion of LSK cells by radiation or the cytotoxic chemical 5-fluorouracil results in an expansion of the LSK(-) population. In contrast, the LSK(-) population is reduced in CML mice, and depletion of leukemia stem cells (LSCs; BCR-ABL-expressing HSCs) by deleting Alox5 or by inhibiting heat shock protein 90 causes an increase in this LSK(-) population. The transition of LSK to LSK(-) cells is controlled by the Icsbp gene and its downstream gene Lyn, and regulation of this cellular transition is critical for the survival of normal LSK cells and LSCs. These results indicate a potential function of the LSK(-) cells in the regulation of LSK cells and LSCs.

PMID:
22675576
PMCID:
PMC3366951
DOI:
10.1371/journal.pone.0038614
[PubMed - indexed for MEDLINE]
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center