Send to

Choose Destination
NMR Biomed. 2013 Jan;26(1):65-73. doi: 10.1002/nbm.2820. Epub 2012 Jun 7.

Pushing the limits of high-resolution functional MRI using a simple high-density multi-element coil design.

Author information

Radiology Department, University Medical Centre Utrecht, the Netherlands.


Recent studies have shown that functional MRI (fMRI) can be sensitive to the laminar and columnar organization of the cortex based on differences in the spatial and temporal characteristics of the blood oxygenation level-dependent (BOLD) signal originating from the macrovasculature and the neuronal-specific microvasculature. Human fMRI studies at this scale of the cortical architecture, however, are very rare because the high spatial/temporal resolution required to explore these properties of the BOLD signal are limited by the signal-to-noise ratio. Here, we show that it is possible to detect BOLD signal changes at an isotropic spatial resolution as high as 0.55 mm at 7 T using a high-density multi-element surface coil with minimal electronics, which allows close proximity to the head. The coil comprises of very small, 1 × 2-cm(2) , elements arranged in four flexible modules of four elements each (16-channel) that can be positioned within 1 mm from the head. As a result of this proximity, tissue losses were five-fold greater than coil losses and sufficient to exclude preamplifier decoupling. When compared with a standard 16-channel head coil, the BOLD sensitivity was approximately 2.2-fold higher for a high spatial/temporal resolution (1 mm isotropic/0.4 s), multi-slice, echo planar acquisition, and approximately three- and six-fold higher for three-dimensional echo planar images acquired with isotropic resolutions of 0.7 and 0.55 mm, respectively. Improvements in parallel imaging performance (geometry factor) were up to around 1.5-fold with increasing acceleration factor, and improvements in fMRI detectability (temporal signal-to-noise ratio) were up to around four-fold depending on the distance to the coil. Although deeper lying structures may not benefit from the design, most fMRI questions pertain to the neocortex which lies within approximately 4 cm from the surface. These results suggest that the resolution of fMRI (at 7 T) can approximate levels that are closer to the spatial/temporal scale of the fundamental functional organization of the human cortex using a simple high-density coil design for high sensitivity.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center