Send to

Choose Destination
See comment in PubMed Commons below
Physiol Res. 2012;61(4):337-46. Epub 2012 Jun 6.

Wnt/beta-catenin signaling: a promising new target for fibrosis diseases.

Author information

Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, PR China.


Wnt/beta-catenin signaling is involved in virtually every aspect of embryonic development and also controls homeostatic self-renewal in a number of adult tissues. Recently, emerging evidence from researches of organ fibrosis suggest that sustained Wnt/beta-catenin pathway reactivation is linked to the pathogenesis of fibrotic disorders. Here we focus on Wnt/beta-catenin-related pathogenic effects in different organs, such as lung fibrosis, liver fibrosis, skin fibrosis and renal fibrosis. Additionally, Wnt/beta-catenin signaling works in a combinatorial manner with TGF-beta signaling in the process of fibrosis, and TGF-beta signaling can induce expression of Wnt/beta-catenin superfamily members and vice versa. Moreover, network analysis, based on pathway databases, revealed that key factors in the Wnt pathway were targeted by some differentially expressed microRNAs detected in fibrosis diseases. These findings demonstrated the crosstalks between Wnt/beta-catenin pathway and TGF-beta signalings, and microRNAs, highlighting the role of Wnts in organ fibrogenesis. Most importantly, nowadays there is a variety of Wnt pathway inhibitors which give us the potential therapeutic feasibility, modulation of the Wnt pathway may, therefore, present as a suitable and promising therapeutic strategy in the future.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Institute of Physiology, Academy of Sciences of the Czech Republic, Prague
    Loading ...
    Support Center