Send to

Choose Destination
Cancer Biol Ther. 2012 Jul;13(9):756-65. Epub 2012 Jun 6.

Selenium-containing histone deacetylase inhibitors for melanoma management.

Author information

Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA.


Melanoma incidence and mortality rates continue to increase each year. Lack of clinically viable agents, drug combinations, effective targeted delivery approaches and success inhibiting targets in tumor tissue have made this disease one of the most difficult to treat, which makes prevention an important option for decreasing disease incidence and mortality rates. Inhibiting histone deacetylases (HDAC) is an approach currently being explored to more effectively treat melanoma but use for prevention has not been explored. In this study, novel selenium containing derivatives of the FDA approved HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) called 5-phenylcarbamoylpentyl selenocyanide (PCP-SeCN) and Bis{5-phenylcarbamoylpentyl} diselenide (B(PCP)-2Se) were created and efficacy tested for preventing early melanocytic lesion development in skin. Topical application of PCP-SeCN and B(PCP)-2Se inhibited melanocytic lesion development in laboratory-generated skin by up to 87% with negligible toxicological effect. Mechanistically, PCP-SeCN and B(PCP)-2Se inhibited HDAC activity and had new inhibitory properties by moderating Akt activity to induce cellular apoptosis as demonstrated by an increase in the sub-G₀-G₁ cell population, and cleaved caspase-3 as well as PARP levels. Furthermore, PCP-SeCN and B(PCP)-2Se inhibited cell proliferation by inhibiting cyclin D1 expression and increasing p21 levels. Thus, PCP-SeCN and B(PCP)-2Se are potential melanoma chemopreventive agents with enhanced efficacy compared with SAHA due to new PI3 kinase pathway inhibitory properties.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Taylor & Francis Icon for PubMed Central
Loading ...
Support Center