Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Opin Struct Biol. 2012 Jun;22(3):304-12. doi: 10.1016/j.sbi.2012.04.007. Epub 2012 May 31.

Recent developments in single-molecule DNA mechanics.

Author information

1
Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. zevry@stanford.edu

Abstract

Over the past two decades, measurements on individual stretched and twisted DNA molecules have helped define the basic elastic properties of the double helix and enabled real-time functional assays of DNA-associated molecular machines. Recently, new magnetic tweezers approaches for simultaneously measuring freely fluctuating twist and extension have begun to shed light on the structural dynamics of large nucleoprotein complexes. Related technical advances have facilitated direct measurements of DNA torque, contributing to a better understanding of abrupt structural transitions in mechanically stressed DNA. The new measurements have also been exploited in studies that hint at a developing synergistic relationship between single-molecule manipulation and structural DNA nanotechnology.

PMID:
22658779
PMCID:
PMC3726534
DOI:
10.1016/j.sbi.2012.04.007
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center