Send to

Choose Destination
Trends Plant Sci. 2012 Sep;17(9):556-62. doi: 10.1016/j.tplants.2012.05.001. Epub 2012 Jun 2.

Chromatin regulation of flowering.

Author information

Department of Biological Sciences, National University of Singapore, Temasek Life Sciences Laboratory, Singapore 117604, Republic of Singapore.


The transition to flowering is a major developmental switch in the life cycle of plants. In Arabidopsis (Arabidopsis thaliana), chromatin mechanisms play critical roles in flowering-time regulation through the expression control of key flowering-regulatory genes. Various conserved chromatin modifiers, plant-specific factors, and long noncoding RNAs are involved in chromatin regulation of FLOWERING LOCUS C (FLC, a potent floral repressor). The well-studied FLC regulation has provided a paradigm for chromatin-based control of other developmental genes. In addition, chromatin modification plays an important role in the regulation of FLOWERING LOCUS T (FT, encoding florigen), which is widely conserved in angiosperm species. The chromatin mechanisms underlying FT regulation in Arabidopsis are likely involved in the regulation of FT relatives and, therefore, flowering-time control in other plants.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center