Format

Send to

Choose Destination
Radiology. 2012 Aug;264(2):551-8. doi: 10.1148/radiol.12111942. Epub 2012 May 31.

Pulmonary lesion assessment: comparison of whole-body hybrid MR/PET and PET/CT imaging--pilot study.

Author information

1
Department of Radiology, Eberhard-Karls University Tuebingen, Tuebingen, Germany.

Abstract

PURPOSE:

To compare the performance of magnetic resonance (MR)/positron emission tomography (PET) imaging in the staging of lung cancer with that of PET/computed tomography (CT) as the reference standard and to compare the quantification accuracy of a new whole-body MR/PET system with corresponding PET/CT data sets.

MATERIALS AND METHODS:

Institutional review board approval and informed consent were obtained. Ten patients in whom bronchial carcinoma was proven or clinically suspected underwent clinically indicated fluorine 18 fluorodeoxyglucose (FDG) PET/CT and, immediately thereafter, whole-body MR/PET imaging with a new hybrid whole-body system (3.0-T MR imager with integrated PET system). Attenuation correction of MR/PET images was segmentation based with fat-water separation. Tumor-to-liver ratios were calculated and compared between PET/CT and MR/PET imaging. Tumor staging on the basis of the PET/CT and MR/PET studies was performed by two readers. Spearman rank correlation was used for comparison of data.

RESULTS:

MR/PET imaging provided diagnostic image quality in all patients, with good tumor delineation. Most lesions (nine of 10) showed pronounced FDG uptake. One lesion was morphologically suspicious for malignancy at CT and MR imaging but showed no FDG uptake. MR/PET imaging had higher mean tumor-to-liver ratios than did PET/CT (4.4 ± 2.0 [standard deviation] for PET/CT vs 8.0 ± 3.9 for MR/PET imaging). Significant correlation regarding the tumor-to-liver ratio was found between both imaging units (ρ = 0.93; P < .001). Identical TNM scores based on MR/PET and PET/CT data were found in seven of 10 patients. Differences in T and/or N staging occurred mainly owing to modality-inherent differences in lesion size measurement.

CONCLUSION:

MR/PET imaging of the lung is feasible and provides diagnostic image quality in the assessment of pulmonary masses. Similar lesion characterization and tumor stage were found in comparing PET/CT and MR/PET images in most patients.

PMID:
22653189
DOI:
10.1148/radiol.12111942
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center