Send to

Choose Destination
Med Eng Phys. 2013 Jan;35(1):96-102. doi: 10.1016/j.medengphy.2012.04.004. Epub 2012 May 29.

Microstructural stress relaxation mechanics in functionally different tendons.

Author information

School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.


Tendons experience widely varying loading conditions in vivo. They may be categorised by their function as either positional tendons, which are used for intricate movements and experience lower stress, or as energy storage tendons which act as highly stressed springs during locomotion. Structural and compositional differences between tendons are thought to enable an optimisation of their properties to suit their functional environment. However, little is known about structure-function relationships in tendon. This study adopts porcine flexor and extensor tendon fascicles as examples of high stress and low stress tendons, comparing their mechanical behaviour at the micro-level in order to understand their stress relaxation response. Stress-relaxation was shown to occur predominantly through sliding between collagen fibres. However, in the more highly stressed flexor tendon fascicles, more fibre reorganisation was evident when the tissue was exposed to low strains. By contrast, the low load extensor tendon fascicles appears to have less capacity for fibre reorganisation or shearing than the energy storage tendon, relying more heavily on fibril level relaxation. The extensor fascicles were also unable to sustain loads without rapid and complete stress relaxation. These findings highlight the need to optimise tendon repair solutions for specific tendons, and match tendon properties when using grafts in tendon repairs.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center