Send to

Choose Destination
See comment in PubMed Commons below
Med Sci Sports Exerc. 2012 Nov;44(11):2057-64. doi: 10.1249/MSS.0b013e318260ff92.

Flow-mediated dilation is acutely improved after high-intensity interval exercise.

Author information

Department of Kinesiology, McMaster University, Hamilton, ON, Canada.



Cardiovascular disease is characterized by decreased endothelial function. Chronic exercise training improves endothelial function in individuals with cardiovascular diseases; however, the acute endothelial responses to a single bout of exercise are not consistent in the literature. This study investigated whether a single bout of moderate-intensity endurance exercise (END) and low-volume high-intensity interval exercise (HIT) on a cycle ergometer resulted in similar acute changes in endothelial function.


Ten individuals (66 ± 11 yr) with coronary artery disease (CAD) participated in two exercise sessions (END and HIT). Endothelial-dependent function was assessed using brachial artery flow-mediated dilation (FMD) preexercise and 60 min postexercise. Brachial artery diameters and velocities were determined using Doppler ultrasound before and after a 5 min ischemic period at all time points. Endothelial-independent function was assessed using a 0.4-mg sublingual dose of nitroglycerin.


The total work performed was higher in END (166 ± 52 kJ) compared with HIT (93 ± 28 kJ) exercise (P < 0.001). Endothelial-dependent function improved (P = 0.01) after END (absolute FMD preexercise, 0.24 ± 0.18 mm; postexercise, 0.31 ± 0.24 mm) and HIT (absolute FMD preexercise, 0.25 ± 0.13 mm; postexercise, 0.29 ± 0.13 mm), with no differences between exercise conditions. A time effect for FMD normalized to the shear rate area under the curve was also observed (P = 0.02) after END (preexercise, 0.005 ± 0.004; postexercise, 0.010 ± 0.011) and HIT (preexercise, 0.005 ± 0.004; postexercise, 0.009 ± 0.011). Endothelial-independent function responses were unchanged after END and HIT (P > 0.05).


HIT and END resulted in similar acute increases in brachial artery endothelial-dependent function in a population with dysfunction at rest, despite the difference in exercise intensities.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Support Center