Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Commun. 2012 May 29;3:869. doi: 10.1038/ncomms1874.

O-glycosylation modulates integrin and FGF signalling by influencing the secretion of basement membrane components.

Author information

  • 1Developmental Glycobiology Unit, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA.

Abstract

Extracellular microenvironments have crucial roles in modulating cell interactions during development. Here we discover that a conserved protein modification (O-glycosylation) influences extracellular matrix composition during mammalian organogenesis, affecting integrin signalling and fibroblast growth factor-mediated cell proliferation. Specifically, mice deficient for an enzyme (Galnt1) that adds sugars to proteins during early stages of organogenesis resulted in intracellular accumulation of major basement membrane proteins and endoplasmic reticulum stress, with resultant effects on fibroblast growth factor signalling, epithelial cell proliferation and organ growth. Exogenous addition of basement membrane components rescued fibroblast growth factor signalling and the growth defects in a β1-integrin-dependent manner. Our work demonstrates for the first time that O-glycosylation influences the composition of the extracellular matrix during mammalian organ development, influencing specific aspects of the endoplasmic reticulum stress response, cell signalling, cell proliferation and organ growth. Our work provides insight into the role of this conserved protein modification in both development and disease.

PMID:
22643896
PMCID:
PMC3533247
DOI:
10.1038/ncomms1874
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center