Format

Send to

Choose Destination
See comment in PubMed Commons below
J Physiol. 2012 Aug 15;590(16):3841-55. doi: 10.1113/jphysiol.2011.226878. Epub 2012 May 28.

The photovoltage of rods and cones in the dark-adapted mouse retina.

Author information

1
Department of Physiological Sciences, University of Pisa, Via San Zeno 31, I-56123 Pisa, Italy. lorenzo.cangiano@gmail.com

Abstract

Research on photoreceptors has led to important insights into how light signals are detected and processed in the outer retina. Most information about photoreceptor function, however, comes from lower vertebrates. The large majority of mammalian studies are based on suction pipette recordings of outer segment currents, a technique that doesn't allow examination of phenomena occurring downstream of phototransduction. Only a small number of whole-cell recordings have been made, mainly in the macaque. Due to the growing importance of the mouse in vision research, we have optimized a retinal slice preparation that allows the reliable collection of perforated-patch recordings from light responding rods and cones. Unexpectedly, the frequency of cone recordings was much higher than their numeric proportion of ∼3%. This allowed us to obtain direct functional evidence suggestive of rod–cone coupling in the mouse. Moreover, rods had considerably larger single photon responses than previously published for mammals (3.44 mV, SD 1.37, n = 19 at 24°C; 2.46 mV, SD 1.08, n = 10 at 36°C), and a relatively high signal/noise ratio (6.4, SD 1.8 at 24°C; 6.8, SD 2.8 at 36°C). Both findings imply a more favourable transmission at the rod–rod bipolar cell synapse. Accordingly, relatively few photoisomerizations were sufficient to elicit a half-maximal response (6.7, SD 2.7, n = 5 at 24°C; 10.6, SD 1.7, n = 3 at 36°C), leading to a narrow linear response range. Our study demonstrates new features of mammalian photoreceptors and opens the way for further investigations into photoreceptor function using retinas from mutant mouse models.

Comment in

PMID:
22641773
PMCID:
PMC3476636
DOI:
10.1113/jphysiol.2011.226878
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center