Format

Send to

Choose Destination
J Environ Radioact. 2012 Nov;113:37-44. doi: 10.1016/j.jenvrad.2012.04.007. Epub 2012 May 23.

Isotopic ratio and vertical distribution of radionuclides in soil affected by the accident of Fukushima Dai-ichi nuclear power plants.

Author information

1
Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1188, Japan. fujiwara@n.t.u-tokyo.ac.jp

Abstract

The results of γ analyses of soil samples obtained from 50 locations in Fukushima prefecture on April 20, 2011, revealed the presence of a spectrum of radionuclides resulted from the accident of the Fukushima Dai-ichi nuclear power plant (FDNPP). The sum γ radioactivity concentration ranged in more than 3 orders of magnitude, depending on the sampling locations. The contamination of soils in the northwest of the FDNPP was considerable. The (131)I/(137)Cs activity ratios of the soil samples plotted as a function of the distance from the F1 NPPs exhibited three distinctive patterns. Such patterns would reflect not only the different deposition behaviors of these radionuclides, but also on the conditions of associated release events such as temperature and compositions and physicochemical forms of released radionuclides. The (136)Cs/(137)Cs activity ratio, on the other hand, was considered to only reflect the difference in isotopic compositions of source materials. Two locations close to the NPP in the northwest direction were found to be depleted in short-lived (136)Cs. This likely suggested the presence of distinct sources with different (136)Cs/(137)Cs isotopic ratios, although their details were unknown at present. Vertical γ activity profiles of (131)I and (137)Cs were also investigated, using 20-30 cm soil cores in several locations. About 70% or more of the radionuclides were present in the uppermost 2-cm regions. It was found that the profiles of (131)I/(137)Cs activity ratios showed maxima in the 2-4 cm regions, suggesting slightly larger migration of the former nuclide.

PMID:
22634028
DOI:
10.1016/j.jenvrad.2012.04.007
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center