Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):E1599-608. doi: 10.1073/pnas.1120027109. Epub 2012 May 24.

Engineering rotor ring stoichiometries in the ATP synthase.

Author information

1
Department of Structural Biology, Max-Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany. denys.pogoryelov@biophys.mpg.de

Abstract

ATP synthase membrane rotors consist of a ring of c-subunits whose stoichiometry is constant for a given species but variable across different ones. We investigated the importance of c/c-subunit contacts by site-directed mutagenesis of a conserved stretch of glycines (GxGxGxGxG) in a bacterial c(11) ring. Structural and biochemical studies show a direct, specific influence on the c-subunit stoichiometry, revealing c(<11), c(12), c(13), c(14), and c(>14) rings. Molecular dynamics simulations rationalize this effect in terms of the energetics and geometry of the c-subunit interfaces. Quantitative data from a spectroscopic interaction study demonstrate that the complex assembly is independent of the c-ring size. Real-time ATP synthesis experiments in proteoliposomes show the mutant enzyme, harboring the larger c(12) instead of c(11), is functional at lower ion motive force. The high degree of compliance in the architecture of the ATP synthase rotor offers a rationale for the natural diversity of c-ring stoichiometries, which likely reflect adaptations to specific bioenergetic demands. These results provide the basis for bioengineering ATP synthases with customized ion-to-ATP ratios, by sequence modifications.

PMID:
22628564
PMCID:
PMC3382517
DOI:
10.1073/pnas.1120027109
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center