Format

Send to

Choose Destination
See comment in PubMed Commons below
Acta Biomater. 2012 Sep;8(9):3302-12. doi: 10.1016/j.actbio.2012.05.015. Epub 2012 May 19.

Thick collagen-based 3D matrices including growth factors to induce neurite outgrowth.

Author information

1
Ecole Pratique des Hautes Etudes, 46 rue de Lille, 75007 Paris, France.

Abstract

Designing synthetic microenvironments for cellular investigations is a very active area of research at the crossroads of cell biology and materials science. The present work describes the design and functionalization of a three-dimensional (3D) culture support dedicated to the study of neurite outgrowth from neural cells. It is based on a dense self-assembled collagen matrix stabilized by 100-nm-wide interconnected native fibrils without chemical crosslinking. The matrices were made suitable for cell manipulation and direct observation in confocal microscopy by anchoring them to traditional glass supports with a calibrated thickness of ∼50μm. The matrix composition can be readily adapted to specific neural cell types, notably by incorporating appropriate neurotrophic growth factors. Both PC-12 and SH-SY5Y lines respond to growth factors (nerve growth factor and brain-derived neurotrophic factor, respectively) impregnated and slowly released from the support. Significant neurite outgrowth is reported for a large proportion of cells, up to 66% for PC12 and 49% for SH-SY5Y. It is also shown that both growth factors can be chemically conjugated (EDC/NHS) throughout the matrix and yield similar proportions of cells with longer neurites (61% and 52%, respectively). Finally, neurite outgrowth was observed over several tens of microns within the 3D matrix, with both diffusing and immobilized growth factors.

PMID:
22617741
DOI:
10.1016/j.actbio.2012.05.015
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for HAL archives ouvertes
    Loading ...
    Support Center