Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(5):e37325. doi: 10.1371/journal.pone.0037325. Epub 2012 May 17.

Plasmodium vivax malaria endemicity in Indonesia in 2010.

Author information

1
Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia. iqbal.elyazar@gmail.com

Abstract

BACKGROUND:

Plasmodium vivax imposes substantial morbidity and mortality burdens in endemic zones. Detailed understanding of the contemporary spatial distribution of this parasite is needed to combat it. We used model based geostatistics (MBG) techniques to generate a contemporary map of risk of Plasmodium vivax malaria in Indonesia in 2010.

METHODS:

Plasmodium vivax Annual Parasite Incidence data (2006-2008) and temperature masks were used to map P. vivax transmission limits. A total of 4,658 community surveys of P. vivax parasite rate (PvPR) were identified (1985-2010) for mapping quantitative estimates of contemporary endemicity within those limits. After error-checking a total of 4,457 points were included into a national database of age-standardized 1-99 year old PvPR data. A Bayesian MBG procedure created a predicted PvPR(1-99) endemicity surface with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population surface.

RESULTS:

We estimated 129.6 million people in Indonesia lived at risk of P. vivax transmission in 2010. Among these, 79.3% inhabited unstable transmission areas and 20.7% resided in stable transmission areas. In western Indonesia, the predicted P. vivax prevalence was uniformly low. Over 70% of the population at risk in this region lived on Java and Bali islands, where little malaria transmission occurs. High predicted prevalence areas were observed in the Lesser Sundas, Maluku and Papua. In general, prediction uncertainty was relatively low in the west and high in the east.

CONCLUSION:

Most Indonesians living with endemic P. vivax experience relatively low risk of infection. However, blood surveys for this parasite are likely relatively insensitive and certainly do not detect the dormant liver stage reservoir of infection. The prospects for P. vivax elimination would be improved with deeper understanding of glucose-6-phosphate dehydrogenase deficiency (G6PDd) distribution, anti-relapse therapy practices and manageability of P. vivax importation risk, especially in Java and Bali.

PMID:
22615978
PMCID:
PMC3355104
DOI:
10.1371/journal.pone.0037325
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center