Format

Send to

Choose Destination
See comment in PubMed Commons below
Nutr Metab (Lond). 2012 May 18;9:41. doi: 10.1186/1743-7075-9-41.

Vitamin B12 deficiency in the brain leads to DNA hypomethylation in the TCblR/CD320 knockout mouse.

Author information

1
Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA. edward.quadros@downstate.edu

Abstract

BACKGROUND:

DNA methylation is an epigenetic phenomenon that can modulate gene function by up or downregulation of gene expression. Vitamin B12 and folate pathways are involved in the production of S-Adenosylmethionine, the universal methyl donor.

FINDINGS:

Brain vitamin B12 concentration and global DNA methylation was determined in transcobalamin receptor (TCblR/CD320) knock out (KO) (n = 4) and control mice (n = 4) at 20-24 weeks of age. Median [IQR] brain vitamin B12 concentrations (pg/mg) in TCblR/CD320 KO mice compared with control mice was 8.59 [0.52] vs 112.42 [33.12]; p < 0.05. Global DNA methylation levels in brain genomic DNA were lower in TCblR/CD320 KO compared with control mice (Median [IQR]: 0.31[0.16] % vs 0.55[0.15] %; p < 0.05.).

CONCLUSIONS:

In TCblR/CD320 KO mice, brain vitamin B12 drops precipitously by as much as 90% during a 20 week period. This decrease is associated with a 40% decrease in global DNA methylation in the brain. Future research will reveal whether the disruption in gene expression profiles due to changes in DNA hypomethylation contribute to central nervous system pathologies that are frequently seen in vitamin B12 deficiency.

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center