Format

Send to

Choose Destination
See comment in PubMed Commons below
Genet Med. 2012 Sep;14(9):823-6. doi: 10.1038/gim.2012.50. Epub 2012 May 17.

Identification of a novel Cys146X mutation of SOD1 in familial amyotrophic lateral sclerosis by whole-exome sequencing.

Author information

  • 1The Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China.

Abstract

PURPOSE:

Familial amyotrophic lateral sclerosis has been linked to mutations in 15 genes, and it is believed these genes account for less than 20-30% of Chinese patients with familial amyotrophic lateral sclerosis. Of the 163 different superoxide dismutase 1 gene mutations in amyotrophic lateral sclerosis 1, only 6.1% of them were from individuals of Chinese origin. Therefore, to quickly learn the causative gene for patients with familial amyotrophic lateral sclerosis in a Chinese pedigree, we opted to apply whole-exome sequencing as a diagnostic tool.

METHODS:

To avoid time-consuming screening of known familial amyotrophic lateral sclerosis candidate genes by PCR-Sanger sequencing, we conducted whole-exome sequencing toward selected individuals of a four-generation familial amyotrophic lateral sclerosis family.

RESULTS:

Patients in the family showed autosomal dominant features, as well as a mean onset age of 35.3 years, and a mean duration of 2.1 years. By deep sequencing analysis, we identified a novel p.Cys146X SOD1 mutation in all examined patients. Genotype-phenotype and SOD1 structural model analysis revealed the effects of the Cys57-Cys146 disulfide bond formation and the C-terminal dimer contact region on the disease phenotypes.

CONCLUSION:

The Cys146X mutation causes familial amyotrophic lateral sclerosis with severe phenotypes. Whole-exome sequencing becomes an attractive diagnostic tool for identifying causative genes, particularly for neurological disorders with unusual phenotypes, pleiotropic malformations, multiple known candidate genes, and complicated inheritance patterns.

PMID:
22595939
DOI:
10.1038/gim.2012.50
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center